Formalised Set Theory: Well-Orderings and the Axiom of Choice
نویسنده
چکیده
In this thesis, we give a substantial formalisation of classical set theory in the proof system Coq. We assume an axiomatisation of ZF and present a development of the theory containing relations, functions and ordinals. The implementation follows the structure of standard text books. In the context of this theory, we prove Zermelo’s Well-Ordering Theorem and the Axiom of Choice equivalent. In addition, we examine the history and development of modern set theory and compare Zermelo’s original versions of the proof. We prove that both of them lead to the same ordering.
منابع مشابه
Zermelo's Well-Ordering Theorem in Type Theory
Taking a `set' to be a type together with an equivalence relation and adding an extensional choice axiom to the logical framework (a restricted version of constructive type theory) it is shown that any `set' can be well-ordered. Zermelo's rst proof from 1904 is followed, with a simpli cation to avoid using comparability of well-orderings. The proof has been formalised in the system AgdaLight.
متن کاملSome remarks on cardinal arithmetic without choice
One important consequence of the Axiom of Choice is the absorption law of cardinal arithmetic. It states that for any cardinals m and n, if m 6 n and n is infinite, then m+ n = n and if m 6= 0, m · n = n. In this paper, we investigate some conditions that make this property hold as well as an instance when such a property cannot be proved in the absence of the Axiom of Choice. We further find s...
متن کاملAn Axiomatic Theory of Well-Orderings
We introduce a new simple first-order framework for theories whose objects are wellorderings (lists). A system ALT (axiomatic list theory) is presented and shown to be equiconsistent with ZFC (Zermelo Fraenkel Set Theory with the Axiom of Choice). The theory sheds new light on the power set axiom and on Gödel’s axiom of constructibility. In list theory there are strong arguments favoring Gödel’...
متن کاملOn characterizations of the fully rational fuzzy choice functions
In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.
متن کاملA rigorous procedure for generating a well-ordered Set of Reals without use of Axiom of Choice / Well-Ordering Theorem
Well-ordering of the Reals presents a major challenge in Set theory. Under the standard Zermelo Fraenkel Set theory (ZF) with the Axiom of Choice (ZFC), a well-ordering of the Reals is indeed possible. However the Axiom of Choice (AC) had to be introduced to the original ZF theory which is then shown equivalent to the well-ordering theorem. Despite the result however, no way has still been foun...
متن کامل